
72 | January 2017 | OPEn SOurCE FOr yOu | www.OpenSourceForu.com www.OpenSourceForu.com | OPEn SOurCE FOr yOu | January 2017 | 73

Developers Let’s Try

Jekyll is a simple, blog-aware, static site generator. It takes a template directory containing
raw text files in various formats, runs it through a converter and spits out a complete,

ready-to-publish static website. This article integrates Jekyll with Docker.

Deploying a Jekyll Blog in Docker

│ ├── images

│ ├── index.html

│ ├── js

│ └── robots.txt

├── _config.yml

├── Dockerfile

├── Gemfile

└── web

Anything that you put into the app/directory will get
copied to the generated site too, so put your css, images, js
files here.

Let’s have a look at the Jekyll config file _config.yml:

source: app

destination: web

url: http://blog.your-domain.com

permalink: pretty

encoding: utf-8

Fill in your domain in the ‘url’ parameter.
Next, have a look at the views; first up is app/_layouts/

default.html:

<!DOCTYPE html>

<html lang=”en” prefix=”og: http://ogp.me/ns#”>

<head>

 <meta charset=”utf-8”>

 <link rel=”stylesheet” type=”text/css” href=”/css/style.

css”>

 <meta name=”viewport” content=”width=device-width,

initial-scale=1”>

 <title>{% if page.title %}{{ page.title }} — {%

endif %}Your Blog</title>

Jekyll is a blog alternative that generates static HTML
from templates that you create. It is a simple, blog-
aware, static site generator written on Ruby by Tom

Preston Werner, GitHub’s co-founder. It takes a template
directory (representing the raw form of a website), runs it
through Markdown and Liquid converters, and spits out a
complete static website.

Why does one need to use Jekyll?
No server-side language or database: This is only good old
HTML/CSS/JS. Frankly, I don’t want to have anything to do
with a database unless I absolutely need to. This also means
it’s worry-free.

Simpler workflow: One only needs a text editor and Git
to update the site or release a blog post. There’s no need for
a local PHP server or anything. Plus, synchronising the local
environment with the one in production takes no more than a
single command.

Fewer dependencies: No more jQuery.paginate for
pagination; Jekyll has a built-in plugin to do it. No more
Prism.js for syntax highlighting; Jekyll comes with Pygments,
a Python based syntax highlighter. Less JS (and especially no
more jQuery) means a faster site.

Enough of asking why; let’s jump to how to
go about things!

Creating the directory structure
The final structure will look something like what’s
shown below:

├── app

│ ├── _drafts

│ ├── _includes

│ ├── _layouts

│ │ ├── default.html

│ │ └── post.html

│ ├── _posts

│ ├── css

72 | January 2017 | OPEn SOurCE FOr yOu | www.OpenSourceForu.com www.OpenSourceForu.com | OPEn SOurCE FOr yOu | January 2017 | 73

DevelopersLet’s Try

 Toggle navigation</

span>

 </button>

 Your Blog

 </div>

 </div> <!-- /.container -->

</nav>

<div class=”container”>

 {{ content }}

</div>

</body>

</html>

Most of the other views will be generated from this,
which is not at all complicated. You can change it according
to your need.

Next up is app/_layouts/post.html:

layout: default

<article>

 <header>

 <h1>{{ page.title }}</h1>

 <div class=”post-info”>

 <div class=”author-published”>

 by {{ page.author }}

 </div>

 <div class=”date-published”>

 <time datetime=”{{ page.date }}”>{{ page.date

| date: ‘%B %d, %Y’ }} </time>

 </div>

 </div>

 </header>

 <div>{{ content }} </div>

</article>

Simple stuff, isn’t it? Please notice, we are using Jekyll
front matter to add some variables that apply only to this
template. The front matter is where Jekyll starts to get really
cool. Any file that contains a YAML front matter block will
be processed by Jekyll as a special file. The front matter must
be the first thing in the file, and must take the form of valid
YAML set between triple-dashed lines.

 <meta http-equiv=”Content-Type” content=”text/html;

charset=utf-8”>

 <meta property=”og:url” content=”{{ site.url }}{{ page.

url | remove_first:’index.html’ }}”>

 <meta property=”og:site_name” content=”blog.your-domain.

com”>

 {% if page.title %}

 <meta property=”og:title” content=”{{ page.title }}”>

 {% endif %}

 {% if page.description %}

 <meta name=”description” content=”{{ page.description

}}”>

 <meta name=”og:description” content=”{{ page.description

}}”>

 {% else if page.excerpt %}

 <meta name=”description” content=”{{ page.excerpt |

strip_html | truncatewords: 25 }}”>

 <meta name=”og:description” content=”{{ page.excerpt |

strip_html | truncatewords: 25 }}”>

 {% endif %}

 {% if page.og_image_url %}

 <meta property=”og:image” content=”{{ page.og_image_url

}}”>

 {% else if page.photo_url %}

 <meta property=”og:image” content=”{{ page.photo_url }}”>

 {% endif %}

 {% if page.keywords %}

 <meta name=”keywords” content=”{{ page.keywords }}” />

 {% endif %}

 {% if page.date %}

 <meta property=”og:type” content=”article”>

 <meta property=”article:published_time” content=”{{ page.

date | date: “%Y-%m-%d” }}”>

 {% endif %}

 <script src=”//code.jquery.com/jquery-2.1.1.min.js”></

script>

</head>

<body>

<nav class=”navbar navbar-default navbar-static-top”>

 <div class=”container”>

 <!-- Brand and toggle get grouped for better mobile

display-->

 <div class=”navbar-header”>

 <button type=”button” class=”navbar-toggle

collapsed” data-toggle=”collapse” data-target=”#bs-example-

navbar-collapse-1” aria-expanded=”false”>

74 | January 2017 | OPEn SOurCE FOr yOu | www.OpenSourceForu.com www.OpenSourceForu.com | OPEn SOurCE FOr yOu | January 2017 | PB

Developers Let’s Try

Finally, the last template in our simple blog will be the
home page. It’s in a different location because it’s the home
page and so it should be at app/index.html:

layout: default

description: Your Beautiful Blog

<h1> Recent Posts </h1>

{% for post in site.posts limit:50 %}

<h2> {{ post.title }} </h2>

<div class=”preview”>

 {% if post.description %}

 {{ post.description | strip_html |

truncatewords: 300 }}

 {% else %}

 {{ post.excerpt | strip_html }}

 {% endif %}

</div>

{% endfor %}

On the home page, we’ll just list the 50 most recent
articles with an excerpt from each one. You may have noticed
that we are again extending from the default layout.

We’re nearly ready to generate the site but need one
more thing...

Using Gems plugins
Remember we mentioned plugins? We’ll configure them now.
Create a Gemfile and put this in it, as shown below:

source ‘https://rubygems.org’

group :jekyll_plugins do

 gem ‘jekyll’, ‘~>3.0’

 gem ‘kramdown’

 gem ‘rdiscount’

 gem ‘jekyll-sitemap’

 gem ‘jekyll-redirect-from’

end

We’ll install these Gems later when we generate the site.
At this point, you might want to write a few words of your
first blog post and put it into app/_posts/. Let’s generate our
site, now!

We’re going to use a Docker container with Jekyll already
installed on it. You can of course install Jekyll locally, but
using a Docker container makes it more portable; for example,
you might decide to build your blog continuously later on, by
containing your tools inside Docker containers. You don’t have
to install them on every server you want to build the blog on.

Run this to install the Gems and build your shiny new
blog, as follows:

$ docker run --rm \

 -v “$(pwd):/src” \

 -w /src \

 ruby:2.3 \

 sh -c ‘bundle install \

 --path vendor/bundle \

 && exec jekyll build --watch’

We’ve added the –watch flag at the end, which is handy
when we’re making changes and we want to see them
reflected immediately on the blog.

Voila! Have a look in the Web/folder—you should see lots
of HTML files, which are what Jekyll generated. If you were
to FTP that entire Web/folder to a server, you would have a
working blog, but we’re going to put it into a Docker container.

The Dockerfile
Our container will be super simple. We just need to serve the
Web/folder that we just generated. Here’s our Dockerfile:

FROM nginx

EXPOSE 80

COPY web/ /usr/share/nginx/html

That’s it! Now, let’s build and run the image:

$ docker build -t my-shiny-blog .

$ docker run -d \

 -p 80:80 \

 -v “$(pwd)/web:/usr/share/nginx/html” \

 my-shiny-blog

Now hit 127.0.0.1:8080 in your browser to see
your blog in action!

Notice that we’ve mounted the source into the container as
a volume, which will allow us to see updates in real-time when
Jekyll regenerates the site (since Jekyll is still running with
‘–watch’), without having to rebuild the image again. Before
pushing the image to your registry, just remember to rebuild!

That’s it! We can of course get fancy and minimise
Javascript or compile less to css using Gulp, but we’ll leave
that as an exercise for the reader. The trick is to put less
source code outside of the app/directory and have Gulp place
the final versions in the app/directory. That way, Jekyll will
copy them over when the site is generated.

By: Srijan Agarwal
The author is a developer at WikiToLearn, an open source
enthusiast and works with JS and PHP mostly. You can
contact him at www.srijanagarwal.me.

[1] https://jekyllrb.com/
[2] https://github.com/jekyll/docker

References

